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J. Phys. A: Gen. Phys., 1970, Vol. 3. Printed in Great Britain 

Many-body optics 
111. The optical extinction theorem and El(k, W) 

R. K. BULLOUGH 
Department of Mathematics, University of Manchester Institute of Science and 
Technology, P.O. Box No. 88, Sackville Street, Manchester 1, England 
M S .  received 14th April 1970 

Abstract. It is shown that the optical modes which were investigated in the 
earlier paper I, which are either longitudinal or transverse, and which satisfy 
the dispersion relations of I, are acceptable solutions of the optical integral 
equation for a locally isotropic molecular fluid at normal temperatures. Accept- 
able solutions must satisfy the optical Extinction Theorem. This constraint 
is very much concerned with the boundary of the system and the system is 
necessarily finite : thus the response functions for the modes of I depend on the 
surface geometry. In simplest geometry the longitudinal modes prove to be 
normal modes; but the transverse modes are modes forced by incident light. 
The linear response of the system to light is calculated: it is shown that the 
existence of a surface to the system is essential to the existence of such a response. 
Light couples to the system through the surface. 

I t  is shown that there are additional longitudinal modes which can be 
forced by incident free charge. In simplest geometry the extinction theorem 
now becomes irrelevant. It is then possible to express the longitudinal dipole 
response in terms of a (k, w)-dependent longitudinal dielectric constant 
~ ~ ( k ,  U ) :  an explicit formula for ei(k, U )  in terms of cluster integrals for the 
fluid is obtained to all orders in intermolecular correlation but exhibition of the 
details of that correlation is deferred until later. The zeros of e l (k ,  w )  yield the 
dispersion relation for the longitudinal normal modes in the same simplest 
geometry. Only in the complex dielectric constant approximation does cl(k, w )  
coincide with the square of the transverse refractive index mt2( U ) .  

The theory of the transverse dielectric constant ct(k, w )  for the molecular 
fluid is developed in paper IV. 

1. Introduction 
This paper is the third in a series devoted to the presentation of a unified theory 

of the microscopic optics of molecular fluids. I n  the first paper of the series (Bullough 
1968-to be referred to as I) we introduced the fundamental integral equation of the 
theory: we obtained transverse and longitudinal dispersion relations in forms which 
implicitly took account of intermolecular multiple scattering processes at all orders, 
but the analysis remained incomplete because we did not show that an essential 
condition, a precise formulation of the optical Extinction Theorem of Ewald (1912, 
1916) and Oseen (1915), was satisfied. This is the first problem we take up now in this 
paper 111. 

However, the problem proves to  be only a part of the bigger problem posed by the 
extinction theorem in the very much more general context of electromagnetic response 
theory. Paper I was concerned with the response of a molecular fluid to light: we 
need also to consider the response of such a system to arbitrary electromagnetic 
probes, for apart from the intrinsic interest of such a theory we can expect from 
previous work in many-body theory (e.g. Nozikres and Pines 1958, Pines 1963, 
Abrikosov et al. 1965) that the general linear electromagnetic response implicitly 
provides a binding energy theory. The  second paper of this series (Bullough 1969- 
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to be referred to as 11) already shows that this is actually the case; but it neither 
justifies this fact nor develops any of the details of the electromagnetic response 
theory. It is therefore precisely the problem of providing a comprehensive and 
consistent formulation of this most general electromagnetic response theory which is 
the subject of this paper 111. Unfortunately the problem posed by the extinction 
theorem in this most general context is such that we must continue its study in two 
further papers: these will therefore follow as parts IV and V of this series (Bullough 
1970 a-to be referred to as IV and Bullough 1970 b-to be referred to as V). 

It was our intention as stated in I to devote the three parts I, I1 and I11 of this 
series to a preliminary mathematical investigation of the fundamental integral equa- 
tion of the theory prior to the detailed derivation of a number of connected physical 
results in the theory of optical scattering, intermolecular binding, and so on. We have 
found it convenient in practice to depart a little from this program of publication. 
Thus in the part I1 which has now appeared we reported a series of physical results 
of the theory as results simply. These were primarily in the theory of binding energy, 
for the structure of the scattering theory has been summarized in brief elsewhere 
(Bullough e t  al. 1968 and Bullough and Hynne 1968). 

These statements of the connected results of the theory will ease the presentation 
of the analysis of the fundamental integral equation which we now take up again from 
I. The  integral equation is examined in the more general context and the analysis 
continues through the three papers 111, IV and V. These constitute a connected 
analysis and should be read together: they are separated only by exigences of space 
and are therefore summarized together in the final section, 3 5 ,  of V.f 

The  main problem considered and solved in the three papers is the construction 
of the most general linear electromagnetic response theory specifically for the molec- 
ular fluid. At first sight this problem is an exercise in conventional many-body 
theory on the lines laid down by Lindhard (1954), for example, or by Nozikres and 
Pines in a series of papers in the late 1950’s (e.g. NoziAres and Pines 1958-on the 
plasma). It is hard to see how this approach is consistent with the problem considered 
in I, however. There we considered the response of the molecular fluid to external 
light: dispersion relations emerged but no response theory. I n  fact the linear response 
of the system to light is exactly the content of the optical extinction theorem. Thus 
in 4 2 of the present paper we develop this aspect of the extinction theorem: we show 
that the modes assumed as solutions of the fundamental integral equation in I are 
valid solutions; and we express the extinction theorem as a linear response relation. 

Unfortunately the solution of this problem, already plain from previous work 
(e.g. Darwin 1924, Born and Wolf 1959, Bullough 1962) raises a second problem. 
The  analysis of the optical response shows that the boundary of the material system 
plays an essential role in the way in which light couples to the system: on the other 
hand many-body systems are usually assumed to be translationally invariant (e.g. 

The material specifically intended for the parts I1 and I11 of the series as projected in I 
appears in fact in this paper I11 and the following paper IV. We are still concerned in these 
papers I11 and IV with the program envisaged in I, namely mathematical aspects of the solution 
of the fundamental integral equation, and that program now continues also in V. But we shall 
find it convenient to raise the status of the paper 111, projected as a ‘mathematical appendix’ in I, 
to  a fundamental analysis of the interaction of electromagnetic fields across the boundary of a 
many-body system-now the paper IV. Aspects of the binding energy theory projected in I to 
appear in I1 are now comprehensively summarized in I1 as it has appeared, and these results 
will be developed in detail later in the series. The paper V examines a semi-phenomenological 
binding energy theory as noted in 11. 
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Nozikres and Pines 1958) and admit arbitrary electromagnetic field modes running 
through the interior either as forced modes or (e.g. Hopfield 1958) as normal modes. 
We are therefore now faced with two problems: that of showing that our molecular 
fluid system can admit arbitrary electromagnetic fields in its interior, and that of 
showing that the existence of these modes is not incompatible with the essential role 
of the boundary in coupling the system to light. 

That a solution of these two problems exists is evident from the brief report in 11. 
The key to the solution is to show that the complete linear response breaks up into 
two parts : one part is surface-independent and translationally invariant: the other part 
is surface-dependent and it is this part which reproduces the optical linear response 
theory when the external probe is light. These two parts to the response functions 
enable us to make a natural distinction between real and virtual electromagnetic 
processes in the molecular fluid. This natural distinction should extend to many-body 
systems other than molecular fluids, for it is certainly applicable to the molecular 
crystal (Bullough and Obada 1969 a,b) and there is no reason to suppose it must be 
limited to molecular many-body systems. 

The  translationally invariant response enables us to define (k, w)-dependent di- 
electric constants for the molecular fluid. This response has the usual structure of 
conventional linear response theory : normal mode solutions satisfying dispersion 
relations are possible solutions and the dispersion relations are singular surfaces of 
the response functions. This raises the question of whether such normal modes are 
normal modes of the homogenous form of the fundamental integral equation of I. 
They are not, in fact, and this leads\us to search for normal modes in the more general 
context of the total linear response theory. 

These several problems are very much complicated by the existence of the surface 
integral which is such an essential feature of the extinction theorem when the probe 
is light. In  consequence the analysis of these problems occupies the third and final 
section of this paper and the whole of IV. This leaves us free in V to focus attention 
on the surface-independent translationally invariant part of the linear response. The 
conventional many-body theoretical structure this exhibits is subsumed under the 
title of ‘virtual mode theory’. Virtual mode theory has a natural and physically 
important approximation: this is the complex dielectric constant approximation 
introduced in I1 in which intermolecular correlation is supposed of such limited 
range that the (k, o)-dependent dielectric constants are effectively k-independent. 
The virtual mode theory in this approximation is a natural microscopic expression of 
a translationally invariant form of a long-wavelength virtual photon theory of the 
type considered by Dzyaloshinskii et  al. (1961). Thus we can compare the results of 
the virtual mode theory in the complex dielectric constant approximation with the 
semi-phenomenological response theory of these authors and with their theory of 
free energy: this is the subject matter of V. 

The working plan of the papers is given section by section below. It will be 
indicative of the emphasis of the work if we recall now why molecular fluids are 
worthy of such exhaustive study. Many-body theorists have previously focused most 
attention on ground-state energies, free energies, and virial expansions: much of the 
binding energy work has been devoted to the plasma (cf. for example, Brout and 
Carruthers 1963) and the arguments based on the Coulomb interaction alone. Interest 
in real fluids of molecular type remains endemic however (e.g. Yvon 1937, Mayer and 
Mayer 1948, Kirkwood and Buff 1951, Frisch and Lebowitz 1964, Brout 1965) and 
new inelastic scattering techniques (Eenedek 1966, Egelstaff 1967) and photon 
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counting methods (Glauber 1963, Bertolotti et al. 1967) are both increasing the 
precision and range of the experimental analysis and focusing attention on scattering 
theory. The  radiation field is an essential feature of any many-body optical scattering 
theory and early work by Casimir (Casimir and Polder 1948) established the signifi- 
cant role of the radiation field in the intermolecular potentials at an intermediate 
range (say 100 A separation). 

Thus a unified study of the collective effects of the radiation field in a many-body 
system has been lacking and is needed now. I t  is the purpose of this series of papers 
to provide this, and molecular systems are particularly suitable for a study of this 
type. 

The  choice of molecular systems for study may seem to limit the arguments in 
fact to a rather particular choice of material model. For we interpret a molecular fluid 
as one in which the wave functions of the free molecules form a good basis for the 
coupled system ; then we can express collective macroscopic parameters like the 
complex refractive index and the dielectric constants in terms of microscopic para- 
meters like the polarizability of the free molecules and the intermolecular correlation 
functions. 

However, it is an aim of the theory to transcend the limitations of the molecular 
model by finding interrelations between macroscopic optical properties of the system. 
What can be done here is already evident in 11, whilst V is specifically intended to  
examine the thesis of Dzyaloshinskii et al. that, although the wave functions in a real 
condensed system are so distorted that there is little hope of calculating them, these 
microscopic features can be concealed in the macroscopic dielectric constant in a 
calculation of the free energy. If this thesis is applicable to a real fluid it should apply 
to a consistent application of our model. 

At the same time the microscopic processes which may be said to occur in a 
many-body system are important in themselves : the scattering theory reported 
(Bullough et al. 1968 and Bullough and Hynne 1968) which is based on the molecular 
model examplifies what can be achieved in relating the microscopic processes to  
macroscopic properties and shows where macroscopic results need explicit reinforce- 
ment by microscopic theory. 

These are the reasons for formulating the microscopic many-body optics of a 
molecular fluid. The  program of the next three papers devoted to this end is, in 
detail, as follows: in 5 2 which follows we start from the extinction theorem as it 
emerged in I. There it appeared as a constraint on the polarization induced in an 
arbitrary macroscopic region V containing many molecules ( N loz3). I n  order to  
carry the analysis further here we particularize V to a parallel-sided slab of finite 
width (c+fd) .  We are then able first of all to characterize the particular modes of 
the types derived in I which propagate along the axis of the slab as forced or normal 
modes: in particular the longitudinal modes of I are normal modes in this case. 

In  5 3 we next show that in the presence of a longitudinal forcing field E parallel 
to the slab axis there are additional forced solutions. These enable us to introduce 
for the molecular fluid the formal (k, w)-dependent dielectric constant El(k, U )  

analogous to that first introduced by Lindhard (1954). 
This completes 111. 
After the brief Introduction, 5 2 of IV introduces the transverse dielectric constant 

ct(k,  U ) :  it offers obvious comparison with that of Nozikres and Pines (1959), for 
example. There is an immediate difficulty associated with the extinction theorem 
which cannot be resolved by choosing particular directions for the mode wave vectors 
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k .  The solution of the difficulty leads naturally into a discussion of transverse normal 
modes: this is still limited to possible transverse modes with k along the slab axis. 

In  $ 3  of IV we extend the earlier arguments for the forced modes to include all 
directions of k .  

In  $ 4  we extend the discussion of normal modes to both transverse and longi- 
tudinal normal modes and all directions of k .  

This completes IV. 
After the brief Introduction, 0 2 of V extends the theory, and especially the virtual 

mode theory, to the case of multicomponent fluid systems. 
In  $ 3 we introduce the complex dielectric constant approximation and a complex 

dielectric constant e( w).  We derive the integral equation of Dzyaloshinskii et al. from 
the microscopic virtual mode theory in this approximation. 

I n  $ 4  we adopt the prescription of Dzyaloshinskii et al. for the free energy. We 
can do this by using E (  w )  alone and all the microscopic processes are concealed in this 
quantity. We contrast the results with the exact? results of the microscopic theory of 
intermolecular binding energy reported in 11. We can infer that the Dzyaloshinskii 
prescription so used does not correctly describe all the significant microscopic pro- 
cesses. 

In  $ 5 we attempt a synthesis of the work of the three papers 111, IV and V: we 
restate some of the more important results and summarize the arguments and con- 
clusions. 

The  one problem still left outstanding from I, that arising from breaking the 
translational invariance of the correlation functions, will be treated later. 

2. The extinction theorem 
The  fundamental integral equation considered in I was 

F(x, x ' ;  w)g(x, x ' ) .  P ( x ' ,  o ) d x ' ) .  (2.1) 

The  field E was a probe there taken to satisfy the free field dispersion relation1 

k = WC-'  E k, 
for each mode of wave vector k :  w is the angular frequency. The  .(U) are the 
(supposed isotropic) frequency-dependent polarizabilities of the isolated particles 
coupled neither to the field nor to each other: 

and as discussed in I (cf. I-$ 2 and equations (2.3) (2.5)) o2 in (2.2) can be read as 
( w  + with 6 a positive infinitesimal and w real and positive, or as o2 simply with 
w real or not. The  quantity n is the average particle number density; the function 
g(x, x') is a particle pair correlation function taken as a function of Y = jx- x' /  

t Exact within the approximations of the microscopic theory and the particular results under 
consideration. 

$ We use k for the magnitude of k .  We used ikl in I. In the free-field dispersion relation 
k is real when w is. From ( 2 . 5 b )  k = mike is complex because mt is. Thus if k = (k1, kz ,  k3) ,  

kz = k I 2  +k22 + k S 2  and is not k* . k (see I). We assume we can always write k = kk with k 
a real unit vector. This may be inadequate (cf. footnote 

A h 

on p. 742). 
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alone by translational invariance? and local isotropy. The  tensor F(x, X' ; U )  is a 
function of r and w alone: 

F(x, x'; w )  = (v7.7 -~ -k ,~U)exp( ik , r ) r -~  (2.3) 
in which U is the unit tensor and K O  = wc- l .  The quantity V is a jinite region 
occupied by the molecular fluid. 

In  I it was shown that the Fourier transform of longitudinal and transverse 
solutions for P of the fundamental integral equation (2.1) were (I-equation (4.8)) 

P,(k ,  w )  = ml-2ko-2P,o(g,  w)6(k - m&,) ( 2 . 4 ~ )  
P,(k, U )  = mt-2ko-2Pt0@, w)6(k-mtk0) (2.4b) 

with k a (real) unit vector in the direction of k (which may be complex) if and only if 

( 2 . 5 ~ )  
(2.5b) 

and providing the constraint (2.7) below, which is the extinction theorem,: could be 
satisfied. In  (2.4) S(x) is the usual &function$ and the functions PLO(& w )  and 
P,,(k, w )  are so far unspecified except that they are respectively longitudinal and 
transverse : 

A 

m(w)J , (mlko ,  w )  = 1 +&~ncc(w) 
m t -  1 = 4zm.(w)(l  - Q ~ n x ( w )  -nx(w)J,(m,ko,  U)>-' 

A 

A 

Pi ,@,  w )  x 6 = 0, Pto(6, w )  . k = 0 .  

We shall find that in the situation envisaged in I the extinction theorem fixes these 
functions except in one singular case. 

Equation (2.5b) is a generalized form of the Lorentz-Lorenz expression for the 
refractive index m,( w )  of transverse polarization modes excited by light: equation ( 2 . 5 ~ )  
is the condition for longitudinal modes, a condition equivalent in the simplest (long 
wavelength) case to the condition m,"( w )  = 0. The  generalization is contained in the 
local field terms Jl,t(mr,tko, w ) ,  These quantities were initially defined in terms of the 
solution of (2.1) and hence in terms of the pair correlation functiong(r): the definitions 
were in effect (I-equations (4.4), (4.5) and (4.12), and cf. 1I)I' 

A A  

J,(m,ho, w )  = kk : 1 F(r, W )  exp(ik . r ) (g ( r )  - 1) dr ;  k = m,KO 

J,(m,k,, w )  = u(&)u(i)  : \ F(r, w )  exp(ik . r ) { g ( r ) -  1) dr ;  k = nz,k,. 

( 2 . 6 ~ )  

(2.6b) 

--2: 

. --L' 

t Kevertheless we break translational invariance (see I, § $  2 and 4). 
$ T h e  extinction theorem is due in the first instance to Ewald (1912, 1916) and Oseen 

(1915). It was used in detail, but without explicit identification by Darwin (1924). I t  forms an 
essential feature of the arguments of Hoek (1939), Rosenfeld (1951), Mazur (1958) and other 
papers, Born and Wolf (1959), and Bullough (1962) and other papers. It has been studied by 
Osborne (1966) in a purely quantal context. 

Since mt is complex by (2 .5b)  (and mi is apparently complex by (2 .5a)) ,  the &functions 
move into the complex k plane. We assume any contour from k = 0 to  k = + CO passes 
through k = mtko in a simple way; if the contour starts at Re{k} > Re{mtko} the &function 
does not contribute; if it starts with Re{k} < Re{mrko} the 8-function does contribute in the 
same simple way. 

1 1  As later in I we now distinguish between the refractive indices mt and mi:  mr is the usual 
refractive index as (2.5b) suggests. 
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I n  these ~ ( k )  is a unit vector orthogonal to k ( u .  k = 0). A vanishingly small 
sphere of volume z’ is taken out about the origin of the r-space of integration: other- 
wise the integrals are taken over all space. 

These quantities J ,  and Jt were later generalized to include many-particle inter- 
actions (multiple scattering processes) of all orders (I-equations (4.17), (4.18) and 
(4.19), II-equations (3) and (4)) and then to two-component systems (I-equa- 
tions (4.26) and (4.27)).? In  cases of rigorous mathematical argumentation, as for 
example in this 5 2, we shall assume that the J ,  and J ,  are defined by (2.4) in terms 
of the particle pair correlation function g(y) alone. However, when we come in 4 3,  
in IV 4 2 and in V to discuss the physics of the forced modes of the virtual mode 
theory (designated ‘virtual modes’ in IV) rather more, we shall assume that J ,  and 
Jt have been given their generalization to include all the many-particle interactions. 
The reason for this is the technical one that a rigorous discussion of the generalization 
introduces considerable complication to the solutions like (2.4) and to the extinction 
theorem which is equation (2.7) : we conveniently defer discussion of this complica- 
tion until much later when we present the theory of external scattering. It is there 
that we shall make a complete analysis of the cluster integrals which appear in J ,  and 

This completes a brief introduction to the optical integral equation (2.1) which 
was studied in I. We have yet to examine the constraint on the solutions (2.4) which 
is also a consequence of that integral equation and which is the optical extinction 
theorem. This is the problem of this section. 

The  constraint on the solutions (2.4) which is the extinction theorem for the 
incident (i.e. applied external) electric field E($,  U )  is (I-equation (3.13)). 

A h 

J t 4  

( 2 . 7 ~ )  

for any set of modes with wave number k = mk,. The vector field Z(x, w )  is defined 
for all points x as the surface integral 

Z(X, w )  s { P ( x ’ ,  U )  d S .  exp(ik,r)r-l-exp(ik,r)it-ldS. w ) }  (2.7b) 

in which P ( x ,  w ) ,  the induced polarization in V ,  is the solution of (2.1), and is in 
general made up of both transverse and longitudinal parts: 

( 2 . 8 ~ )  

c 

P ( x ,  w )  = P,(x,  w ) + P , ( x ,  w )  

and P ,  and P ,  have the Fourier transforms on the variable x given by (2.4): 

P ( k ,  w )  = P,(k,  w ) + P , ( k ,  w ) .  (2 .8b)  

The problem to be solved in this section is therefore this: the induced polariza- 
tion P ( x ,  U )  of ( 2 . 8 ~ )  with Fourier transform given by (2.8b) together with (2.4) is 
already proved to be a potential solution of the fundamental equation (2.1) : this form 
for P ( x ,  w )  is consistent with but also demands the dispersion relations (2.5), for this 

t The  solution of (2.1) when g(r )  = 1, the case first considered in I, is the ‘molecular field’ 
approximation : equation (2.1) includes additional two-body correlations : the solution of the 
most general integral equation includes many-particle correlation of all orders (compare Brout 

$ The complication is that of the surface terms of Bullough et al. (1968) and Bullough and 
1965-p. 7 2 ) .  

Hynne (1968). 
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result was the main result of I. The  problem now is to show that the potential 
solution ( 2 . 8 ~ )  satisfies the extinction theorem (2.7). Such a demonstration would 
show that the potential solution ( 2 . 8 ~ )  of (2.1) is indeed an actual solution of (2.1); 
and this would show that the physically important result, the dispersion relations (2.5), 
are valid relations. 

Before we attack the problem we make two additional preliminary remarks. The  
first concerns notation. We shall find it convenient to work sometimes in k space and 
sometimes with single modes in x space. Although the two things are the same the 
technical connection between the two is slightly cumbersome. A single mode of 
polarization of wave vector k’ and with longitudinal and transverse parts is 

( 2 . 8 ~ )  P ( x ,  w )  = Pto(&’, w )  exp(ik’ . x) +P,,(^k’, w )  exp(ik’ . x). 

The  Fourier transform of this is 
h 

P(k,  w )  = ( 2 ~ ) ~  Pto(k’, w)6(k-k’)+(2n-)3 PLO($’, w)6(k-k’). (2.8d) 

It is usually convenient to write 

6(k-k’) = k - 2 6 ( k - k ’ ) 6 ( & - k ^ ’ ) .  

Even so Pt0($, w )  and w )  in (2.8d) differ by extraction of the ( 2 7 ~ ) ~  and the 
angular &function from these same symbols in (2.4) when k’ = mk,& I n  practice, 
however, we shall use (2 .8~)  for an arbitrary single mode of wave vector k’ in x space; 
and we shall also use expressions like (2.4) in k space. This omission or re-interpreta- 
tion of factors will cause no confusion in practice. Note that because k‘ is the wave 
vector of both longitudinal and transverse parts in (2 .8~)  we must have 

k’ = mk, = m,k, = m,k, 

in this particular case: usually we treat the two sorts of modes separately. 
The  second preliminary remark stems from the first. The  reason why we wish to 

work in both k space and x space is the following: k space is ultimately the more 
convenient for the development of response functions-particularly in terms of the 
dielectric constants eL,,(k,  w ) ;  but the method of Born and Wolf (1959), which was 
developed in I and made applicable to the solution of the fundamental integral equa- 
tion now exhibited in (2.1) and to the more general form of that equation considered 
in I, was applied directly to the polarization P(x ,  w )  induced in x space, This 
quantity is probably the most convenient one for a first discussion of the extinction 
theorem. 

This is so for the following reason: the surface integral Z in (2.7) is a consequence 
of finite V and the break of translational invariance; but we must break translational 
invariance until we can show we can consistently do otherwise, and the considerations 
of 9 2 of IV show that this is not straightforward. Because of the breaking of transla- 
tional invariance C depends both on the field point x inside or outside V and is a 
functional of the induced polarization P(x’ ,  w )  at all points X’ on the surface C of V.  
Thus the Fourier transform on x of 22 depends on the wave vector k and on all the 
modes k’ in the Fourier resolution of P(x’, w) (as equations (3.3) below, and IV- 
equation (2.3), later explicitly show). This seems to imply coupling between all the 
modes: however, we shall see that the extinction theorem is such that in the most 
general case (considered in IV) there is at most coupling between one mode of wave 
vector k and two other modes with wave number m,k,. With these two preliminary 
remarks out of the way we can now take up our problem. 

A5 
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Equations (2.7) are integro-differential equations for P ( x ,  w )  when E($,  w ) ,  the 
probe, is given: alternatively we can choose P ( x ,  U )  the response and show that there 
is a physically reasonable E ( x ,  w )  determined from it by ( 2 . 7 ~ ) .  Because we presently 
choose the single mode solution (2.8~)  we implicitly adopt the second point of view; 
fortunately, because the response to a given probe is the important physical quantity, 
we find that after a suitable correction of the one-mode solution (2.8~) we do not really 
prejudice the solution of (2.7) for given E($,  w )  by using just that one mode. 

We recall from I that so far E ( x ,  w )  is an incident light (i.e. free) field and so is 
itself not quite arbitrary: it satisfies (I-equation (3.3)) 

div E ( x ,  w )  = 0 ( 2 . 9 ~ )  

( V 2 + K O 2 ) E ( X ,  w )  = 0. (2.9b) 

Equation (2.9b) implies the free-field dispersion relation k = for every mode k 

Since (2.7b) is a surface integral taken over the boundary X of the region of volume 
V containing the fluid, we can expect to be able to choose two only of V ,  E and P .  
In  addition to P we therefore choose V and take it to be the very definite form of the 
parallel-sided slab - c < x < d, x2 +y2 < R2 : the coordinates (x, y ,  x) are Cartesian 
components of the vector X :  the slab is infinite in any two linearly independent 
directions orthogonal to the x axis in the sense that we take the limit R -+ CO. Thus 
V is not strictly finite now but is still adequate for our purpose. 

For such a region V ,  providing we can assume that we can neglect any finitely 
oscillating terms from the surface x2 +y2 = R2 as R -+ CO, we find easily (cf. Bullough 
1962-Appendix 1) that for all wave vector directions along the positive x axis (the 
direction I z ,  (say) which is the axial direction of the slab) equation ( 2 . 8 ~ )  implies from 
the definition (2.7b) that 

of E ( x ,  U)' 

C (x, U )  = [ -2v exp{ - i(nz,- l ) koc )  exp(ik,x)( 1 + m,) - 2v exp(i(m, + l)kod} 

x exp( - ik,z)(l- mt)l P&,, w )  + [ - 2.rr exp( - i(m, - I)~z,c> 

x exp(ik,z)(l+ ml)  -2n expCi(m, + 1)kod) exp( - ik,z)(l - m~lpl(i21, 
(2.10) 

for all x inside V.  

vectors are confined to the axial direction k ,  of the slab, we have by definition that 
Since P ,  and P l  are respectively tracsverse and longitudinal and their wave 

A h 

P t .  k ,  = 0, P ,  x k1 = 0. 

When (2.10) is substituted into ( 2 . 7 ~ )  we then simply get 

0 = (m," - 1)E + [ - 2~ exp{ - i(m, - l )k ,c )  exp(ik,z)( 1 + m,) - 2% exp{i(m, - l ) k o d }  

x exp( - ik,z)(l- m,>ln~,~(G,, w ) .  . (2.11) 
A 

The important point is that P,,(k, ,  w )  does not appear at all and so there is no con- 
straint upon it.? The  reason for this is that the differential operator 2perating on 
C(X, w )  in ( 2 . 7 ~ )  ensures that every mode of wave vector direction 5 k ,  and wave 

A t Except only that the wave vector direction is k, .  
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number K O  is strictly transverse to x and k, so that (2.11) contains examples of each of 
these modes and no others. It follows that the extinction theorem has now no rele- 
vance to the longitudinal modes: it is in this ‘particular and limited sense’ that the 
extinction theorem ‘becomes irrelevant to the 1ongitudin:l modes.’? 

A consequence of (2.11) is that E is also transverse to k, and has wave number k, 
and this is wholly consistent with (2.9) : the point here however is that (2.11) implies 
that E must satisfy (2.9) if (2 .8~)  satisfies ( 2 . 7 ~ )  and so satisfies (2.1). Thus the probe 
must be light. 

We can therefore conclude the following: the longitudinal part of (2 .8~)  which 
can now take the form 

A 

P,o(R,, a) exp(im,k,z) 

is not a forced mode; the associated P,(k,Aa) of (2 .4~)  is not a forced solution of 
(2.1); and these longitudinal modes with k along the axis of V are normal mod: 
solutions 2f arbitryy vector amplitude. Obviously it does not matter yhether k 
lies along k, or - k, : it 1,s sufficient for a normal longitudinal mode that k is either 
par:llel or antiparallel to k,.S At the same time, since E is necessarily light transverse 
to k,, these longitudinal normal modes are never excited by light: we can choose 
E 0 by (2.11), this does not imply PLO = 0. 
It is ‘well-known’ that longitudinal modes are not excited by light (compare e.g. 
Pines 1963-pp. 201-2) and this demonstration from the extinction theorem is very 
satisfying. We show in IV, 5 3, however, that this simple situation is a consequence 
of the choice of h parallel or antiparallel to the axis k, of the slab V. 

0 the transverse solu- 
tions f t 0  are forced solutions; and if P,, is a single mode of wave vector k’, 6’ is 
along k, and k’ = m,k,. I n  addition (2.11) shows that, at all points x inside V ,  E 
must consist of two modes with wave vectors zt A,%, parallel and antiparallel to the 
slab axis. Then on physical grounds if E is an imposed field we must impose this 
field both inside and outside V so that it becomes a physical probe. $ With this choice 
of E ( $ ,  a), the transverse part of (2 .8~)  is also a valid solution of (2.1); and since 
E $ 0 this solution is a forced solution. 

The  most usual and certainly most desirable situation is one in yhich E( X, U )  is a 
single plane monochromatic wave travelling (say) in the direction k, of the positize 
x axis: 

0, and although this implies P,,  

Further since by (2.11) E is light and E = 0 implies P, ,  

A A A A  

E ( $ ,  U )  = E,(k,, a) exp(ik,z), k, . E ,  = 0, k, = k,. (2.12) 

In this case we can satisfy (2.11) if, but only if, (2 .8~)  is extended to include a second 
transverse mode travelling in the direction opposite to fi,. If this is done we easily find 
(Bullough 1962-Appendix 1) that, if now 

Pto($’, a) exp(ik’ .!x) +PtO($,, a)(exp(im,k,z)+A exp( - im,k,z)} 
then 

A = -- exp(2im,k0d) (:: z 9 (2 .14~)  

See the Introduction to I. 
We find in IV, § 3 that this condition is also necessary. 

S Z(X, w) # 0 outside V and then describes waves additional to the probe reflected from 
the surface X and outside V. 
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If we write equation (2.14b) in the form 

m,2-1 
47n P&, 0) = ___- s ( ; m,k,&,, w)Eo  

we have the response relation in k space 

mt2 - 1 
4xn 

P,(k,  0) = __- S ( Z  ; k ,  w)(a+(k)+Aa-(k)}E(k, w )  

E , .  (2.14b) 

(2.15) 

A 

in the particular case when k = K,kl. The quantities o * ( k )  are operators: a+(k) 
changes the wave number R ,  to m,k, (by replacing K,-26(k-K, )  in E(k, w )  by 
m,-2K,-26(K-mtk,)): a-(k) does the same and in addition reverses the direction of 
the wave vector. The  part of the response s( Z ;  k ,  U )  depends on the surface C as 
(2.14b) shows. 

The response relation (2.15) is useful for a later comparison. Here we need observe 
only that the results (2.14) are the exact results of the phenomenological Maxwell 
theory in the case of a single plane wave satisfying (2.9) incident normally upon an 
infinite parallel-sided slab of width (c+d) .  However, we must emphasize that this 
result is obtained here not by imposing boundary conditions at the surface of V ;  for 
the boundary conditions are those of I, namely sources of E at infinity and an out- 
going wave condition on the optical Green's function (2.3) of the theory. It is now 
plain on physical grounds that the transverse solution must depend very heavily o," 
the form of V and its surface and that we can use (2 .8~)  with (2.12) only because k ,  
is the axis of the simple slab we chose for V. Even so we had to extend (2 .8~)  to 
include a wave reflected from the interior surface of the slab. 

It is noteworthy that the two modes with wave vectors 2 m,k,&, correspond to the 
two obvious roots of (2.5b)l.: the extinction theorem fixes both the amplitudes of these 
two modes by (2.14). However, as noted in I, it is by no means clear that ( 2 . 5 b )  
does not have additional roots for m: since J,(m,k,, w )  depends on mt2.Jy If this is so 
the most general solution of (2.1) is a linear combination of modes with wave numbers 
- + m,k, made from the different roots m,, perhaps heavily damped, but still existing 
near the surface of V.  There is no sign that more than two amplitudes can be fixed 
by the extinction theorem. This point is not understood, but it may be associated 
with the additional solutions which arise through the breakdown of the translational 
invariance of the correlation functions : where there is no correlation there are precisely 
two roots for m, (see I-equation (3.7)). The problem associated with the breakdown 
of the translational invariance of the correlation functions will be looked at later in this 
series. 

This completes our analysis of the validity of the modes (2.4) as solutions of the 
integral equation (2.1) : the modes (2.4) m e  valid solutions. 

t Jt(m,ko, w )  contains only even powers of mt. 
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Thus in summary of this section we conclude that providing that 6 lies parallel or 
antiparallel to the axis of the slab V all the modes (2.4) which were derived in the 
paper I are acceptable modes. The  longitudinal modes (2 .4~)  are normal modes; and 
because there is no field E outside V associated with these modest there is no energy 
flux across the surface of V and these modes cannot transmit energy.$, It is hard to 
see, however, whether or not the longitudinal modes are still true normal modes at 
the delicate theoretical level at which we are obliged to discuss the scattering and 
whether there is any inconsistency there; for it is not clear whether the important 
physical roots of (2 .5~)  for m, can be the purely real roots necessary for true normal 
modes and consistency. The  quantities J,(k, w) on which m,( w) depends are complex 
for arbitrary k and w and are very much concerned with external scattering processes 
(cf. 11, Bullough et al. 1968 and Bullough and Hynne 1968) but this does not of itself 
eliminate the chance of purely real roots for the physical roots of (2 .5~)  when k = m,K,. 
This delicate question is thus still open. 

I n  contrast w$h the longitudinal modes, the transverse modes (2.4b) with wave 
vector direction k parallel to the axis of the slab V are forced modes excited by a 
strictly transverse free field (light). This free field contains precisely two modes with 
wave vectors parallel and anti-parallel to the axis of the slab. I n  the case when the 
imposed free field contains a single mode incident along the axis of the slab two 
distinct modes like (2.4b) with wave vectors parallel and antiparallel to the axis of the 
slab are induced in that slab. I n  both cases the most important physical roots for the 
refractive index m, of these forced modes are certainly complex due to external 
scattering. $ The  microscopic theory otherwise exhibits all the features of the Maxwell 
phenomenological theory but the boundary conditions are only outgoing boundary 
conditions on the fundamental microscopic integral equation (2.1). 

The  contrast between the characters of the two classes of modes raises the question 
of the existence of forced longitudinal solutions and of normal transverse solutions. 
There is also the question of the possibility of additional modes when the probing 
field is not light. We consider these problems in $ 3  and the earlier sections of the 
following paper IV still keeping theAparallel-sided slab for the region V and still 
restricting the wave vector direztions k parallel to the axis of the slab : in $ 3 of IV we 
finally relax this condition on k .  

3. Forced longitudinal modes and E,@, U) 

We now want to investigate whether the integral equation (2.1) will admit longi- 
tudinal solutions forced by a longitudinal field E , .  The  forcing fields so far considered 
in I were light fields satisfying (2.9) and were necessarily transverse. Now E ,  cannot 
satisfy (2.9a), free charge density p ( x ,  w) must be present, continuity then implies a 
free longitudinal current density j , ( x ,  U )  and E ,  will not satisfy (2.9b). We have 
instead of (2.9) 

( 3 . 1 ~ )  

curlE,(x, w) = 0 (3 . lb)  

The transversality condition eliminates Z(X, w) both inside and outside V. 
There is no indication that the modes must be coupled into standing waves in order to 

transmit no energy. 
$ We have yet t o  prove this here; but the report (Bullough et al. 1968 and Bullough and 

Hynne 1968) already shows how complete the scattering theory which depends on this fact 
actually is. 

divE,(x, w) = 4np(x, w) 
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and the longitudinal condition (3.lb) means that there is at most a constant magnetic 
field associated with the probe. We shall choose this field to be zero everywhere. 

I t  is the aim of this section to derive a longitudinal response function and it is 
now desirable to work wholly in k space. This introduces the complication associated 
with the extinction theorem noted in 9 2, but this is soon eliminated for the longitudi- 
nal modes by working with single modes like the longitudinal mode of (2.8~) (but in 
k space), with the slab V,  and with the single mode wave vector k along the slab axis. 

The  Fourier transform of equations (3.1) is straightforward: it is 

ik . E,(k ,  w )  = 4 4 k ,  w )  

ik x E,(k, w )  = 0. 
(3 .2a)  
(3.2b) 

We must now go back to equation (3.11) of I. That equation had not yet included the 
local field terms J, (k ,  w )  and J,(K, w ) :  since they always add to the Lorentz field 
(4n/3)nc/. term it is clear where they go in the theory and we shall also omit them from 
the argument here for the moment. 

The  Fourier transform on the position variable x of the equation (3.11) of I is 
otherwise quite generally 

P ( k ,  w )  = a(w){E(k ,  w )  +(kO2U - k k )  . 4 r n P ( k ,  w)(k2  - ku2) - I  + (4n /3 )nP(k ,  w ) }  

I (k ,  - k ’ ;  w )  + ( k , W  - kk)  . I_ P ( k ’ ,  w )  dk’ ( 3 . 3 )  

providing P(k’ ,  w )  = O(K’-ko)  or better in the neighbourhood of K’ = K , . f  In  (3.3) 

I ( k ,  - k ’ ,  w )  = J exp( - ik . X) dx J [exp(ik’ . x’) dS . Vxf 
c 

x {exp(ik, 1x - x’  I ) /  1 x - x’ 1) - {exp(ik, Ix - x’  I ) /  Ix - x ’  I }  dS’ . V,. 
x exp(ik’ , x’)] (3.4) 

and is thus the scalar magnitude of the Fourier transform on x of the vector quantity 
Z( x, U )  of (2.7b) now evaluated for a single mode of wave vector k’ and unit amplitude. 

Careful inspection of (3.3) shows that it is the Fourier transform of the funda- 
mental integral equation (2.1) in which g(Y) is replaced by unity: this introduces 
divergence at x’ = x in the integrand there, and this is the source of the (47~/3)nP(k,  w )  
term. It is, however, the Fourier transform of the Green’s function exp(ik,r)r-l on 
the finite region V (breaking translational invariance so that Y = [ x - x ’ /  must be 
treated as a function of x and x’ separately) which introduces all the complication of 
the extinction theorem: as noted in 9 2 this complication now takes the form of the 
two wave vectors k and k’ in (3.3). We cannot avoid this complication until we can 
see we need not break translational invariance: so far the argument of 5 2 shows that 
we actually need this complication if the external probe is light since otherwise the 
equations cannot be satisfied. 

No parameter m appears in (3.3) since there are not yet any conditions on the 
induced polarization P ( x ,  w )  in V :  in particular we do not assume as we did in I that 

t It  is mathematically convenient and physically sensible to exclude the case k = ka from 
P(k, w )  : we believe the theory for the longitudinal modes can be carried through without this 
restriction at the expense of an increase in complication: what happens to the transverse 
response of IV, 9 2 for k = K O  is considered there. 
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P ( x ,  w )  necessarily satisfies in x space the condition 

(V2+m2k02)P(x,  w )  = 0 .  (3.5) 
If this condition is to apply it must emerge now from its Fourier transform in (3.3).? 

We restrict the polarization induced by E ,  to a single set of modes with wave 
vector k parallel to the axis of the slab V and we are concerned only with its longi- 
tudinal part. Thus P ( k ,  U )  is P,(k ,  w ) ,  longitudinal with a 6-function restricting the 
direction 6 of k to the slab axis; since ( 3 . 5 )  does not apply there is no restriction on 
k = Ik( (except that k # k,). In  this case the surface integral in (3.4) yields for 
every k’ parallel to the slab axis two modes with wave vectors & k ,  parallel to the slab 
axis (and wave number F E o )  and (3.4) is a 6-functionrestrictingthe directions & parallel 
or antiparallel to the s$b axis: it is also a &function restricting the wave number k 
to the value KO. Since k and P ,  are parallel to the slab axis the factor ( k k - k O 2 U )  is a 
transversality factor and eliminates the whole term. This argument exactly parallels 
the argument for the elimination of the surface integral for longitudinal modes in 4 2.  

Thus it follows that with P , ( k ,  w )  and hence k parallel to the slab axis equation ( 3 . 3 )  
reduces to 

P,(k ,  w )  = a(w){E, (k ,  w )  - (877-/3)nP,(k, 0)). ( 3  * 6 )  
The field E ,  is to satisfy (3 .2)  (and because we choose P to vanish as O ( k - k o )  con- 
veniently at k = k , ,  E , (k ,  w )  and hence p(k, w )  should have the same property).$ 
Because P , ( k ,  w )  is restricted to a single-mode direction E ,  is also. 

It follows from (3.6) that P , ( k ,  U )  is a forced solution of the integral equation (2 .1)  
with g(y) = 1 now if and only if 

( 3 . 7 )  

and it is plain that the proper generalization to obtain a forced solution of that funda- 
mental integral equation with g(y) a typical pair correlation function is 

P , ( k ,  w )  = [ a ( o ) { l + ( 8 n / 3 ) n a ( w )  -na(w)J , (k ,  ~ ) ) - ~ l E , ( k ,  w ) .  (3 .8)  
For present purposes it is not necessary to restrict J ,  to the two-body interaction of 
the definition ( 2 . 6 ~ )  and we can now think of it as having the much greater generality 
achieved in I in which J ,  became a sum of many-particle interactions (multiple- 
scattering processes) of all orders. (I- equations (4.17),  (4.18) and (4.19)).  

Since p ( x ,  w )  is an arbitrary imposed free charge density its Fourier transform is 
arbitrary: it follows from (3 .2)  that 

and no dispersion relation connects the variables k and w (although some connection 
may be implied by the particular choice of p ( x ,  w ) ) . §  Thus the quantity in square 
brackets in (3 .8)  is a linear response function connecting the polarization P ,  induced 
by the probing charge density p(k,  w ) ,  and k and w are essentially free variables. This 
response function has the property we expect, namely that normal mode solutions 

t I t  does of course when the probe is Zight: see IV-$ 2. 
*+ Recall that an incident fast particle approximates to a transverse electromagnetic wave 

9 The Fourier transform of a($ -ut) is 278(w - k  . V )  for a point charge travelling with 
(Williams 1935). 

velocity v for example. 
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are possible whenever k and w lie on the surfaces of zeros of its denominator: these 
surfaces are the roots o f  

( 3  .lo) 1 + ( ~ T / ~ ) T Z R ( W )  - n ~ ( w ) J , ( h ,  U )  = 0 

and this is precisely the longitudinal dispersion relation ( 2 . 5 ~ ) .  
If we define the response function implicit in (3 .8)  as the significant analytical 

quantity we do not conform to current usage (e.g. Nozikres and Pines 1958, Shultz 
1963-chap. 3 ,  5 H) in the many-body theory of the electron gas. We therefore argue 
as follows : we first introduce a- f o r m a l  pseudo-Maxwell macroscopic electric field 
vector E,($ ,  t )  with transform E,(k, U ) .  This is defined to satisfy the following 
pseudo-macroscopic equations : 

ik . E,(k, w)E,(k, w )  = 4np(k, w )  ( 3 . 1 1 ~ )  

ik(&(k, w )  +4nnP,(k, U)> = 47i-p(k, w )  (3 .11b)  

in which E,(k, w )  is a formal scalar (k, w)-dependent dielectric constant. We empha- 
size that the equations (3.11) are formal definitions: it does not follow that El(k, U )  has 
any of the physical significance associated with m,"( w )  for example. At the end of this 
section we note however that in the long-wavelength low-frequency limit both c l  and 
m: become the frequency-dependent dielectric constant E( w )  identifiable with that of 
Maxwell phenomenological theory; and we elaborate on this (as the complex dielectric 
constant approximation of 11) in V. The  first equations (3 .11)  yields (for scalar el 

( 3 . 1 2 ~ )  

in contrast with ( 3 . 2 ~ ) ;  the second yields 

ik , &(k, CO) = 47i-(p(k, w )  - ik . nP,(k, U ) ) .  

With k̂ restricted to the axis of the slab V we can use (3 .8)  to reduce the second 
equation to 

(3 .12b)  

ik . E,(k, w )  = 4np(k, w)-4nn~(w)(l  +(87i-i3)na(w)-nrx(w)J,(k, U)>-' 

x (ik . E,(k, U ) }  

and from ( 3 . 2 ~ )  we then get 

( 3 . 1 3 ~ )  

ik , El(E,  U )  = 4np(k, w)(l-(47~/3)na(w) -nr(w)J,(k ,  w))(l+ ( 8 ~ / 3 ) n x ( w )  

- nrx(w)J,(k, U ) } - ' .  (3 .136)  

Equation ( 3 . 1 2 ~ )  now means that 
47i-na( w )  

El(k, U )  - 1 = (3 .14)  
1 - (4n/3)na(w) -na(w)J,(k,  w )  

in which k and w are free variables. 
With this result the response function takes the compact form 

(1- l/el(k, w)}(~wz)- '  
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for equation (3.7) becomes 

4 ~ n P , ( k ,  W) = (1 - 1/E,(k, ~ ) } & ( k ,  w) (3 .15~)  

(3.15b) 

Note that the singularities of El(k, U )  (if these are poles) are not singularities of the 
response function: indeed the singularities of ~ , ( k ,  w) appear to have no physical 
significance and this illustrates the point that ~ ~ ( k ,  w) is simply a formal construction. 
On the other hand the surfaces of singularity of the response function are the zeros of 
EL(k, w) and these are the dispersion relations for longitudinal modes (2 .5~) .  This well- 
accepted property of the macroscopic dielectric constant E (  w) has therefore been taken 
over by ~ ~ ( l z ,  U).?. 

I n  contrast (3.14) is almost exactly the transoerse dispersion relation (2.5b) for 
m,”( w). It differs only in the usually very small numerical difference between J, (k ,  w) 
and J,(m,k,, w) when k N m,k, (recall from I that J,(O, w) = Jt(O, w) and J,(k, U )  

and J, (k ,  U )  depend weakly on A) .  Conceptually (3.14) and (2.5b) are quite different 
of course: equation (2.5b) is a dispersion relation relating k and w for transverse modes 
and, as (2.15) shows, m,” - 1 is part of a rather complicated response function relating 
in terms of specific surface-dependent quantities the single transverse forcing field 
mode E(&, w) (light) normally incident upon the slab V to the two transverse modes of 
dipole moment it induces: equation (3.14) is a formal expression which expresses the 
relation of a formal Maxwell field E,(k,  w) to the probing field p(k, w) by (3.12a), it is 
independent of surface effects (which vanished with the surface integral of the extinc- 
tion theorem) and is strictly longitudinal. Equations (3.15) show the response in longi- 
tudinal dipole moment. 

Equation (3.15b) is formally comparable with the usual definition of the ( k ,  w)- 
dependent dielectric constant in the form 

Ptota@, 0) = p(k, U) - ik * nP,(k,  w) 

(3.16) 

(compare, e.g. Schultz 1963-p. 81). This demonstrates the firm structural connec- 
tion between the work on ~ ( k ,  w) for the plasma and the theory presented here for the 
molecular fluid. The  connection is no idle one : formulae for electron stopping power 
and longitudinal contributions to the binding energy carry straight over and can be 
extended to include the radiation field as reported in 11. But this does not mean that 
the extension from the plasma is trivial : the point of course is that complicated features 
specific to the theory of the molecular fluid are merely concealed in ~ ~ ( k ,  w) in (3.14). 
There is even some contribution in Jl(k,  w) from the intermolecular radiation field 
concealed there. 

I n  the following paper IV we derive the natural transverse analogue of (3.14): 

-- 
47rn~( w) .& w) - 1 = 

1 -(47r/3)nx(w)-na(w)Jt(k,  U)’  
(3.17) 

We observed in I that the zeros of mt2( w )  d9 not quite yield what is in fact the dispersion 
relation which is ( 2 . 5 ~ ) .  
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This means that we then have the following results: 

always, and 
E @ ,  U) = .t(O, w )  

q(0, w )  = et(0, w )  = m,"w) 

(3.18a) 

(3.18b) 

when but only when K O  = wc- l  is much less than a reciprocal correlation length 
t-'.? The  result (3.18b) is that of the physically important complex dielectric constant 
approximation (see 11, and V-$ 3) and it is this alone which enables us to ascribe any 
physical significance to e,(k,  w )  or et(k, w ) .  It is not even true (cf. Pines 1963-equa- 
tion (4.66)) that el,t(O, w )  = m,2(w) when we wish to consider the k-dependent 
external scattering of light from a molecular fluid at optical frequencies (Bullough and 
Hynne 1968). Thus the dielectric constants must not be confused with either m,"( w )  
or its low-frequency analogue the complex frequency-dependent dielectric constant 

We shall find in the following paper IV, however, that the most significant differ- 
ence between the response function (3.15) in which k and w are free variables, and 
the response function (2.15) which depends on w alone, is rooted in the extinction 
theorem. We have reached (3.15) only because we have restricted the theory of 
longitudinal modes to wave vectors k which eliminate this awkward feature from the 
argument. But we find in IV that no such simplification is possible when we try to 
introduce the transverse dielectric constant et(k, w) .  There is still a natural way to 
reach (3.17), however. 

The  main conclusions of this $ 3  are, first, that as well as the normal modes 
considered so far there can be in the molecular fluid additional forced longitudinal 
modes: the existence of both types of mode has been demonstrated only for those 
modes with wave vector k parallel to the axis of the slab V. Second, (for such k at 
least) there is a natural (k ,  w)-dependent longitudinal dielectric constant el(k,  U )  for 
the molecular fluid : it satisfies the relation (3.14). The  longitudinal response function, 
which is 1 - l/e,(k, w )  has the longitudinal normal mode dispersion relations (2 .5~)  
as its surfaces of singularity. 

We now go on to develop the theory of the natural transverse dielectric constant 
et(k, U )  for the molecular fluid in the following paper IV. 

4 U). 
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